
Page 1 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

SMC CALLING CONVENTION
System Software on ARM® Platforms

Document number: ARM DEN 0028B

Copyright © ARM Limited or its affiliates 2013, 2016

Page 2 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

SMC Calling Convention
System Software on ARM
Copyright ©2013, 2016 ARM Limited or its affiliates. All rights reserved.

Release information
The Change History table lists the changes that are made to this document.

Table 1-1Change history

Date Issue Confidentiality Change

June 2013 A Non-Confidential First release

November 2016 B Non-Confidential HVC calling convention. SMC calling
convention clarifications and updates.

Non-Confidential Proprietary Notice
This document is protected by copyright and the practice or implementation of the information in this document
may be protected by one or more patents or pending applications. No part of this document may be reproduced in
any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document.
This document is Non-Confidential but any disclosure by you is subject to you providing the recipient with the
conditions set out in this notice and procuring the acceptance by the recipient of the conditions set out in this
notice.
Your access to the information in this document is conditional upon your acceptance that you will not use, permit,
or procure others to use the information for the purposes of determining whether implementations infringe your
rights or the rights of any third parties.
Unless otherwise stated in the terms of the Agreement, this document is provided “as is”. ARM makes no
representations or warranties, either express or implied, included but not limited to, warranties of merchantability,
fitness for a particular purpose, or non-infringement, that the content of this document is suitable for any particular
purpose or that any practice or implementation of the contents of the document will not infringe any third-party
patents, copyrights, trade secrets, or other rights. ARM makes no representation concerning, and has undertaken
no analysis to identify or understand the scope and content of such third-party patents, copyrights, trade secrets,
or other rights.
This document may include technical inaccuracies or typographical errors.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT LOSS, LOST REVENUE, LOST PROFITS OR DATA,
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
Words and logos that are marked with ® or TM are registered trademarks or trademarks, respectively, of ARM
Limited. Other brands and names that are mentioned in this document may be the trademarks of their respective
owners. Unless otherwise stated in the terms of the Agreement, you will not use or permit others to use any
trademark of ARM Limited.
This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication, or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.
Copyright © 2013, 2016 ARM Limited or its affiliates
110 Fulbourn Road, Cambridge, England CB1 9NJ. All rights reserved.

Page 3 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

1 ABOUT THIS DOCUMENT 4
1.1 Introduction 4
1.2 References 4
1.3 Terms and abbreviations 5

2 SMC AND HVC CALLING CONVENTIONS 7
2.1 SMC calls 7
2.2 HVC Calls 7
2.3 Fast and Yielding types of calls 7
2.4 32-bit and 64-bit Conventions 7
2.5 Function Identifiers 7

2.5.1 Conduits 8
2.6 SMC32/HVC32 Argument passing 9
2.7 SMC64/HVC64 Argument passing 9
2.8 SIMD and floating-point registers 10
2.9 SMC and HVC immediate value 10
2.10 Client ID (optional) 10

2.10.1 SMC calls 10
2.10.2 HVC calls 10

2.11 Secure OS ID (optional) 11
2.12 Session ID (optional) 11

3 AARCH64 SMC AND HVC CALLING CONVENTIONS 12
3.1 Register use in AArch64 SMC and HVC calls 12

4 AARCH32 SMC AND HVC CALLING CONVENTION 13
4.1 Register use in AArch32 SMC and HVC calls 13

5 SMC AND HVC RESULTS 14
5.1 Error Codes 14
5.2 Unknown Function Identifier 14
5.3 Unique Identification (UID) format 14
5.4 Revision information format 15

6 FUNCTION IDENTIFIER RANGES 16
6.1 Allocation of Values 16
6.2 General Service Queries 17
6.3 Implemented Standard Secure Service Calls 18

APPENDIX A: EXAMPLE IMPLEMENTATION OF YIELDING SERVICE CALLS 19

SMC Calling Convention

Page 4 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

1 ABOUT THIS DOCUMENT

1.1 Introduction
This document defines a common calling mechanism that is to be used with the Secure Monitor Call (SMC) and
Hypervisor Call (HVC) instructions in both the ARMv7 and ARMv8 architectures.

The SMC instruction is used to generate a synchronous exception that is handled by Secure Monitor code running
in EL3. Arguments and return values are passed in registers. After being handled by the Secure Monitor, calls that
result from the instructions can be passed on to a Trusted OS or some other entity in the secure software stack.

The HVC instruction is used to generate a synchronous exception that is handled by a hypervisor running in EL2.
Arguments and return values are passed in registers. Hypervisors can also trap SMC calls that are made by
Guest Operating Systems (at EL1), which allows the calls to be emulated, passed through, or denied as
appropriate.

This specification aims to ease integration and reduce fragmentation between software layers, for example
Operating Systems, hypervisors, Trusted OSs, Secure Monitors, and System Firmware.

Note: This document is defined for the ARMv8-A Exception levels, EL0 to EL3.

The relationship between these Exception levels and the 32-bit ARMv7 Exception levels is described in
[2.]

1.2 References
This document refers to the following documents.

Reference Doc No Author Title

[1.] ARM DDI 0406 ARM ARM® Architecture Reference Manual
ARMv7-A and ARMv7-R edition

[2.] ARM DDI 0487 ARM ARM® Architecture Reference Manual, ARMv8, for
ARMv8-A architecture profile

[3.] ARM IHI 0042 ARM Procedure Call Standard for the ARM 32-bit
Architecture

[4.] ARM IHI 0055 ARM Procedure Call Standard for the ARM 64-bit
Architecture

[5.] ARM DEN 0022 ARM Power State Coordination Interface

[6.] http://tools.ietf.org/html/rfc4122 IETF RFC 4122 - A Universally Unique IDentifier (UUID)
URN Namespace

http://tools.ietf.org/html/rfc4122

SMC Calling Convention

Page 5 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

1.3 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

AArch32 state The ARM 32-bit Execution state that uses 32-bit general purpose registers, and a 32-bit
program counter (PC), stack pointer (SP), and link register (LR). AArch32 Execution
state provides a choice of two instruction sets, A32 and T32, previously called the ARM
and Thumb instruction sets.

AArch64 state The ARM 64-bit Execution state that uses 64-bit general purpose registers, and a 64-bit
program counter (PC), stack pointer (SP), and exception link registers (ELR). AArch64
Execution state provides a single instruction set, A64.

EL0 The lowest Exception level. The Exception level that is used to execute user applications,
in Non-secure state.

EL1 Privileged Exception level. The Exception level that is used to execute operating
systems, in Non-secure state.

EL2 Hypervisor Exception level. The Exception level that is used to execute hypervisor code.
EL2 is always in Non-secure state.

EL3 Secure Monitor Exception level. The Exception level that is used to execute Secure
Monitor code, which handles the transitions between Non-secure and Secure states. EL3
is always in Secure state.

Function Identifier A 32-bit integer that identifies which function is being invoked by this SMC or HVC call.
Passed in R0 or W0 into every SMC or HVC call.

HVC Hypervisor Call, an ARM assembler instruction that causes an exception that is taken
synchronously into EL2.

Hypervisor The hypervisor runs at the EL2 Exception level. It supports the execution of multiple EL1
Operating Systems.

Non-secure state The ARM Execution state that restricts access to only the Non-secure system resources
such as: memory, peripherals, and System registers.

OEM Original Equipment Manufacturer. In this document, the final device manufacturer.

PE Processing element. The abstract machine that is defined in the ARM architecture, see
[2.]

Rx Register; A32 native 32-bit register, A64 architectural register

S-EL0 The Secure EL0 Exception level, the Exception level that is used to execute trusted
application code in Secure state.

S-EL1 The Secure EL1 Exception level, the Exception level that is used to execute Trusted OS
code in Secure state.

Secure Monitor The Secure Monitor is software that executes at the EL3 Exception level. It receives and
handles Secure Monitor exceptions, and provides transitions between Secure state and
Non-secure state.

Secure state The ARM Execution state that enables access to the Secure and Non-secure systems
resources, such as: memory, peripherals, and System registers.

SiP Silicon Partner. In this document, the silicon manufacturer.

SMC Calling Convention

Page 6 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

SMC Secure Monitor Call. An ARM assembler instruction that causes an exception that is
taken synchronously into EL3.

SMCCC SMC Calling Convention, this document.

SMC32/HVC32 32-bit SMC and HVC calling convention.

SMC64/HVC64 64-bit SMC and HVC calling convention.

Wx A64 32-bit register view.

Xx A64 64-bit register view.

Trusted OS The secure operating system running in the Secure EL1 Exception level. It supports the
execution of trusted applications in Secure EL0.

SMC Calling Convention

Page 7 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

2 SMC AND HVC CALLING CONVENTIONS

2.1 SMC calls
In the ARM architecture, synchronous control is transferred between the normal Non-secure state and the Secure
state through Secure Monitor Call exceptions [1.][2.]. SMC exceptions are generated by the SMC instruction
[1.][2.], and handled by the Secure Monitor. The operation of the Secure Monitor is determined by the parameters
that are passed in through registers.

2.2 HVC Calls
HVC calls that are made by an Operating System at EL1 result in a synchronous transfer of control to an EL2
hypervisor, and are regarded as HVC exceptions. The operation of the hypervisor is determined by the
parameters that are passed in through registers.

2.3 Fast and Yielding types of calls
Two types of calls are defined:

• Fast Calls execute atomic operations.
The call appears to be atomic from the perspective of the calling PE, and returns when the requested
operation has completed.

• Yielding Calls start operations that can be preempted by a Non-secure interrupt. The call can return
before the requested operation has completed.
Appendix A provides an example of handling yielding calls.

2.4 32-bit and 64-bit Conventions
For the SMC and HVC, two calling conventions instructions are defined:

• SMC32/HVC32: A wholly 32-bit interface that can be used by either 32-bit or 64-bit client code, and
passes up to six 32-bit arguments.
Because only SMC32/HVC32 calls are used for the identification of Function Identifier ranges, the 32-bit
calling convention is mandatory for all compliant systems, whether they are 32-bit or 64-bit systems. See
also 6.2.

• SMC64/HVC64: A 64-bit interface that can be used only by 64-bit client code, and passes up to six 64-bit
arguments.
SMC64/HVC64 calls are expected to be the 64-bit equivalent to the 32-bit call, where applicable.

2.5 Function Identifiers
The Function Identifier is passed on every SMC and HVC call and it determines:

• The service to be invoked.
• The function to be invoked.
• The calling convention (32-bit or 64-bit) that is in use.
• The call type (fast or yielding) that is in use.

SMC Calling Convention

Page 8 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

Its 32-bit integer value indicates which function is being requested by the caller. It is always passed as the first
argument to every SMC or HVC call in R0 or W0.
Several bits within the 32-bit value have defined meanings, as shown in Table 2-1.

Table 2-1 Bit usage within the SMC and HVC Function Identifier

Bit Numbers Bit Mask Description

31 0x80000000 If set to 0, the call is a Yielding Call.
If set to 1, the call is a Fast Call (atomic).

30 0x40000000 If set to 0, the SMC32/HVC32 calling convention is used.
If set to 1, the SMC64/HVC64 calling convention is used.

29:24 0x3F000000 Service Call ranges. They are further defined in section 6.

Owning
Entity

Number

Bit Mask Description

0 0x00000000 ARM Architecture Calls

1 0x01000000 CPU Service Calls

2 0x02000000 SiP Service Calls

3 0x03000000 OEM Service Calls

4 0x04000000 Standard Secure
Service Calls

5 0x05000000 Standard Hypervisor
Service Calls

6 0x06000000 Vendor Specific
Hypervisor Service Calls

7-47 0x07000000 – 0x2F000000 Reserved for future use

48-49 0x30000000 – 0x31000000 Trusted Application Calls

50-63 0x32000000 – 0x3F000000 Trusted OS Calls

23:16 0x00FF0000 Must be zero (MBZ), for all Fast Calls, when bit[31] == 1.
All other values are reserved for future use.
Note: Some ARMv7 legacy Trusted OS Fast Call implementations have all bits
set to 1.

15:0 0x0000FFFF Function number within the range call type that is defined by bits[29:24].

2.5.1 Conduits
Service calls are expected to be invoked through SMC instructions, except for Standard Hypervisor Calls and
Vendor Specific Hypervisor Calls. On some platforms, however, SMC instructions are not available, and the
services can be accessed through HVC instructions. The method that is used to invoke the service is referred to
as the conduit.

SMC Calling Convention

Page 9 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

Table 2-2 describes which conduits are available, and how they depend on the Exception levels that are
implemented.

Table 2-2: Dependence of conduits on implemented Exception levels

EL3
Implemented

EL2
Implemented

Conduits Notes

Yes Yes SMC, HVC
Yes No SMC
No Yes HVC Only permitted on ARMv8-A
No No N/A No conduit required

The SMC calling convention, however, does not specify which instruction (either SMC or HVC) to use to invoke a
particular service.

2.6 SMC32/HVC32 Argument passing
When the SMC32/HVC32 convention is used, an SMC or HVC instruction takes a Function Identifier and up to six
32-bit register values as arguments, and can return up to four 32-bit register values. For SMC calls that originate
from EL2, an optional seventh 32-bit argument can be added, as described in sections 2.10 and 2.11.

When an SMC32/HVC32 call is made from AArch32:
• A Function Identifier is passed in register R0.
• Arguments are passed in registers R1-R6.
• Results are returned in R0-R3.
• Registers R4-R14 are saved by the function that is called, and must be preserved over the SMC or HVC

call.

When an SMC32/HVC32 call is made from AArch64:
• A Function Identifier is passed in register W0.
• Arguments are passed in registers W1-W6.
• Results are returned in W0-W3.
• Registers X18-X30 and stack pointers SP_EL0 and SP_ELx are saved by the function that is called, and

must be preserved over the SMC or HVC call.

Note: Unused result and scratch registers can leak information after an SMC or HVC call. An implementation
can mitigate this risk by either preserving the register state over the call, or returning a constant value,
such as zero, in each register.

Note: SMC32/HVC32 calls from AArch32 and AArch64 use the same physical registers for arguments and
results, since register names W0-W7 in AArch64 map to register names R0-R7 in AArch32.

2.7 SMC64/HVC64 Argument passing
When the SMC64/HVC64 convention is used, the SMC or HVC instruction takes up to six 64-bit arguments in
registers and can return up to four 64-bit values in registers. For SMC calls originating from EL2 an optional
seventh 32-bit argument can be added, as described in sections 2.10 and 2.11.
When an SMC64/HVC64 call is made from AArch64:

• A Function Identifier is passed in register W0.
• Arguments are passed in registers X1-X6.
• Results are returned in X0-X3.

SMC Calling Convention

Page 10 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

• Registers X18-X30 and stack pointers SP_EL0 and SP_ELx are saved by the function that is called, and
must be preserved over the SMC or HVC call.

This calling convention cannot be used by code executing in AArch32 state.
• Any SMC64/HVC64 call from AArch32 state receives the “Unknown Function Identifier” result, see section

5.2.
Note: Unused result and scratch registers can leak information after an SMC or HVC call. An implementation

can mitigate against this risk by either preserving the register state over the call, or returning a constant
value, such as zero, in each register.

2.8 SIMD and floating-point registers
SIMD and floating-point registers must not be used to pass arguments to or receive results from any SMC or HVC
call that complies with this specification.
All SIMD and floating-point registers are saved by the function that is called, and must be preserved over all SMC
and HVC calls.

2.9 SMC and HVC immediate value
The SMC and HVC instructions encode an immediate value, as defined by the ARM architecture [1.][2.]. The size
of this immediate value and mechanisms to access the value differ between the ARM instruction sets. Also, it is
time-consuming for 32-bit Secure Monitor code to access this immediate value.
Therefore:

• For all compliant calls, an SMC or HVC immediate value of zero must be used.
• Nonzero immediate values in SMC instructions are reserved.
• Nonzero immediate values in HVC instructions are designated for use by hypervisor vendors.

2.10 Client ID (optional)
Provisions have been made for secure software to track and index client IDs.

2.10.1 SMC calls
If an implementation includes a hypervisor or similar supervisory software that executes at EL2, it might be
necessary to identify from which client operating system the SMC call originated.

• A 16-bit client ID parameter is optionally defined for SMC calls.
• In AArch32, the client ID is passed in the R7 register, see Table 4-1.
• In AArch64, the client ID is passed in the W7 register, see Table 3-1.
• The client ID of 0x0000 is designated for SMC calls from the hypervisor itself.

The client ID is expected to be created within the hypervisor and used to register, reference, and de-register client
operating systems to a Trusted OS. It is not expected to correspond to the VMIDs used by the MMU.
If a client ID is implemented, all SMC calls generated by software executing at EL1 must be trapped by the
hypervisor. Identification information must be inserted into R7 or W7 register before forwarding any SMC call on to
the Secure Monitor.
If no hypervisor is implemented, the Guest OS is not required to set the client ID value.

2.10.2 HVC calls
The Client ID is ignored by the HVC calling convention.

SMC Calling Convention

Page 11 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

2.11 Secure OS ID (optional)
In the presence of multiple secure operating systems at S-EL1, the caller must specify for which secure OS the
call is intended:

• An optional 16-bit secure OS ID parameter can be defined for SMC calls.
• In AArch32, the secure OS ID is passed in the R7 register, see Table 4-1
• In AArch64 state, the secure OS ID is passed in the W7 register, see Table 3-1.

2.12 Session ID (optional)
To support multiple sessions within a Trusted OS or hypervisor, it might be necessary to identify multiple
instances of the same SMC or HVC call:

• An optional 32-bit Session ID can be defined for SMC and HVC calls.
• In AArch32, the Session ID is passed in the R6 register, see Table 4-1.
• In AArch64, the Session ID is passed in the W6 register, see Table 3-1.

The Session ID is expected to be provided by the Trusted OS or hypervisor, and is used by its clients in
subsequent calls.

SMC Calling Convention

Page 12 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

3 AARCH64 SMC AND HVC CALLING CONVENTIONS
This specification defines common calling mechanisms for use with the SMC and HVC instructions from the
AArch64 state. These calling mechanisms are referred to as SMC32/HVC32 and SMC64/HVC64.
For ARM AArch64:

• All trusted OS and Secure Monitor implementations must conform to this specification.
• All hypervisors must implement the Standard Secure and Hypervisor Service calls.

3.1 Register use in AArch64 SMC and HVC calls
For the AArch64 calling conventions, the architectural registers, R0-R7, are used.
The working size of the register is identified by its name:

Xn All 64-bits are used.
Wn The least significant 32-bits are used, and the most significant 32-bits are zero. Implementations must

ignore the least significant bits.

Table 3-1 Register Usage in AArch64 SMC32, HVC32, SMC64, and HVC64 calls

Register Name Role during SMC or HVC call

SMC32/HVC32 SMC64/HVC64 Calling values Modified Return state

SP_ELx ELx stack pointer No

Unchanged;
registers are saved
or restored

SP_EL0 EL0 stack pointer No

X30 The Link Register No

X29 The Frame Pointer No

X19…X28 Registers that are saved by the called function No

X18 The Platform Register No

X17 The second intra-procedure-call scratch
register

Yes

Unpredictable;
scratch registers

X16 The first intra-procedure-call scratch register Yes

X9…X15 Temporary registers Yes

X8 Indirect result location register Yes

W7 W7 Optional Client ID in bits[15:0] (ignored for HVC
calls)
Optional Secure OS ID in bits[31:16]

Yes

W6 X6
(or W6)

Parameter register
Optional Session ID register

Yes

W4…W5 X4…X5 Parameter registers Yes

W1…W3 X1…X3 Parameter registers Yes SMC and HVC
result registers W0 W0 Function Identifier Yes

For more information, see [4.] Procedure Call Standard for the ARM 64-bit Architecture.

SMC Calling Convention

Page 13 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

4 AARCH32 SMC AND HVC CALLING CONVENTION
This specification defines a common calling mechanism for use with the SMC and HVC instructions from the
AArch32 state, which are referred to as SMC32/HVC32.

Note: ARM recognizes that some vendors already use a proprietary calling convention and are not able to meet

all the following requirements.

4.1 Register use in AArch32 SMC and HVC calls
Table 4-1 Register usage in AArch32 SMC and HVC Calls

Register
SMC32/HVC32

Role during SMC or HVC call

Calling values Modified Return state

R15 The Program Counter Yes Next instruction

R14 The Link Register No

Unchanged,
registers are saved or restored

R13 The stack pointer No

R12 The Intra-Procedure-call scratch
register

No

R11 Variable-register 8 No

R10 Variable-register 7 No

R9 Platform register. No

R8 Variable-register 5 No

R7 Optional Client ID in bits[15:0]
(ignored for HVC calls)
Optional Secure OS ID in
bits[31:16]

No

R6 Parameter register 6
Optional Session ID

No

R5 Parameter register 5 No

R4 Parameter register 4 No

R3 Parameter register 3 Yes

SMC and HVC results registers
R2 Parameter register 2 Yes

R1 Parameter register 1 Yes

R0 Function Identifier Yes

For more information, see [3.] Procedure Call Standard for the ARM 32-bit Architecture.

All architecturally banked registered must be preserved over AArch32 calls.

SMC Calling Convention

Page 14 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

5 SMC AND HVC RESULTS

5.1 Error Codes
Errors codes that are returned in R0, W0 and X0 are considered to be sign-extended to the appropriate size:

• In AArch32:
o When using the SMC32/HVC32 calling convention, error codes, which are returned in R0, are 32-

bit signed integers.
• In AArch64:

o When using the SMC64/HVC64 calling convention, error codes, which are returned in X0, are 64-
bit signed integers.

o When using the SMC32/HVC32 calling convention, error codes, which are returned in X0 or W0,
are sign-extended to 64-bit signed integers, because bits[63-32] are UNDEFINED.

5.2 Unknown Function Identifier
The Unknown SMC Function Identifier is a sign-extended value of (-1) that is returned in R0, W0 or X0 register.
An implementation must return this error code when it receives:

• An SMC or HVC call with an unknown Function Identifier.
• An SMC or HVC call for a removed Function Identifier.
• An SMC64/HVC64 call from AArch32 state.

Note: The Unknown Function Identifier must not be used to discover the presence, or lack of, an SMC or HVC

Function. Function Identifiers must be determined from the UID and Revision information.

5.3 Unique Identification (UID) format
This value identifies the implementer of a particular subrange of the API, and therefore what controls the actions
of SMCs in that subrange.
The UID is a UUID as defined by RFC 4122 [6.]. These UUIDs must be generated by any method that is defined
by RFC 4122 [6.], and are 16-byte strings.
UIDs are returned as a single128-bit value using the SMC32 calling convention. This value is mapped to argument
registers as shown in Table 5-1.

Table 5-1: UUID register mapping

Register Value
AArch32 AArch64
R0 W0 Bytes 0…3 with byte 0 in the low-order bits
R1 W1 Bytes 4…7 with byte 4 in the low-order bits
R2 W2 Bytes 8…11 with byte 8 in the low-order bits
R3 W3 Bytes 12…15 with byte 12 in the low-order bits

UIDs with the least significant 32 bits set to 0xFFFFFFFF must not be used, because they are indistinguishable
from Unknown Function Identifiers.
There can be many implementers of standard APIs. The API compatibility is determined by revision numbers.

SMC Calling Convention

Page 15 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

5.4 Revision information format
The revision information for a subrange is defined by a 32-bit major version and a 32-bit minor version.
Different major version values indicate a possible incompatibility between SMC and HVC APIs, for the affected
SMC and HVC range.
For two revisions, A and B, where the major version values are identical, and the minor version value of revision B
is greater than the minor version value of revision A, every SMC and HVC instruction in the affected range that
works in revision A must also work in revision B, with a compatible effect.
When returned by a call, the major version is returned in R0 or W0 and the minor version is returned in R1 or W1.
Such an SMC or HVC instruction must use the SMC32 or HVC32 calling conventions.
The rules for interface updates are:

• A Function Identifier, when issued, must never be reused.
• Subsequent SMC or HVC calls must take a new unused Function Identifier.
• Calls to Function Identifiers that have been removed must return the Unknown Function Identifier value.
• Incompatible argument changes cannot be made to an existing SMC or HVC call. A new call is required.
• Major revision numbers must be incremented when:

o Any SMC or HVC call is removed.
• Minor revision numbers must be incremented when:

o Any SMC or HVC call is added.
o Backwards compatible changes are made to existing function arguments.

SMC Calling Convention

Page 16 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

6 FUNCTION IDENTIFIER RANGES

ARM defines the SMC and HVC services that are listed in Table 6-1.

Table 6-1: SMC and HVC Services

Service Comment
ARM Architecture Service Provides interfaces to generic services for the ARM Architecture.
CPU Service Provides interfaces to CPU implementation-specific services for this platform, for

example access to errata workarounds.
SiP Service Provides interfaces to SoC implementation-specific services on this platform, for

example secure platform initialization, configuration, and some power control
services.

OEM Service Provides interfaces to OEM-specific services on this platform.
Standard Secure Service Standard Service Calls for the management of the overall system. By standardizing

such calls, the job of implementing Operating Systems on ARM is made easier.

Section 6.3 lists Secure Services that are already defined.

Standard Hypervisor
Service

Standardized Hypervisor Service Calls allow for common hypervisor discovery
mechanism from any Guest OS.

Vendor Specific
Hypervisor Service

Proprietary Hypervisor Service Calls.

Trusted Applications
Trusted OS

6.1 Allocation of Values
Table 6-2 shows the recommended allocation of Function Identifier value ranges for different entities and
purposes. The owner of a range is the entity who is responsible for that function in a specific SoC. The same
entity can be responsible for multiple subranges. Values that are not covered by the table are reserved.

Table 6-2: Allocated subranges of Function Identifier to different services

SMC Function Identifier Trusted World subrange ownership
0x00000000-0x0100FFFF Reserved for existing APIs

This region is already in use by the existing ARMv7 devices.
0x02000000-0x1FFFFFFF Trusted OS Yielding Calls
0x20000000-0x7FFFFFFF Reserved for future expansion of Trusted OS Yielding Calls
0x80000000-0x8000FFFF SMC32: ARM Architecture Calls
0x81000000-0x8100FFFF SMC32: CPU Service Calls
0x82000000-0x8200FFFF SMC32: SiP Service Calls
0x83000000-0x8300FFFF SMC32: OEM Service Calls
0x84000000-0x8400FFFF SMC32: Standard Service Calls
0x85000000-0x8500FFFF SMC32: Standard Hypervisor Service Calls
0x86000000-0x8600FFFF SMC32: Vendor Specific Hypervisor Service Calls

SMC Calling Convention

Page 17 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

0x87000000-0xAF00FFFF Reserved for future expansion
0xB0000000-0xB100FFFF SMC32: Trusted Application Calls
0xB2000000-0xBF00FFFF SMC32: Trusted OS Calls
0xC0000000-0xC000FFFF SMC64: ARM Architecture Calls
0xC1000000-0xC100FFFF SMC64: CPU Service Calls
0xC2000000-0xC200FFFF SMC64: SiP Service Calls
0xC3000000-0xC300FFFF SMC64: OEM Service Calls
0xC4000000-0xC400FFFF SMC64: Standard Service Calls
0xC5000000-0xC500FFFF SMC64: Standard Hypervisor Service Calls
0xC6000000-0xC600FFFF SMC64: Vendor Specific Hypervisor Service Calls
0xC7000000-0xEF00FFFF Reserved for future expansion
0xF0000000-0xF100FFFF SMC64: Trusted Application Calls
0xF2000000-0xFF00FFFF SMC64: Trusted OS Calls

6.2 General Service Queries
The following general queries are defined for each service:

• Call Count Query – Returns a 32-bit count of the available service calls. The count includes both 32 and
64 calling convention service calls and both fast and yielding calls.

• Call UID Query – Returns a unique identifier of the service provider, as specified in section 5.3.
• Revision Query – Returns revision details of the service, as specified in section 5.4.

If the service is not implemented, general service queries must return the “Unknown Function Identifier” error.
The following table recommends the following Function Identifier values to use for general service queries:

Table 6-3: Function Identifier values of general queries

Service
Query1

Call Count Call UID Revision
ARM Architecture Service 0x8000_FF00 0x8000_FF01 0x8000_FF03
CPU Service 0x8100_FF00 0x8100_FF01 0x8100_FF03
SiP Service 0x8200_FF00 0x8200_FF01 0x8200_FF03
OEM Service 0x8300_FF00 0x8300_FF01 0x8300_FF03
Standard Secure Service 0x8400_FF00 0x8400_FF01 0x8400_FF03
Standard Hypervisor Service 0x8500_FF00 0x8500_FF01 0x8500_FF03

Vendor Specific Hypervisor
Service 0x8600_FF00 0x8600_FF01 0x8600_FF03

Trusted Applications2 - - -
Trusted OS 0xBF00_FF00 0xBF00_FF01 0xBF00_FF03

1 Note that the queries are SMC32/HVC32 Fast calls.
2 It is the responsibility of a Trusted OS to identify and describe services provided by Trusted Applications.

SMC Calling Convention

Page 18 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

Besides the values in the table above, the other Function Identifiers in the 0xXXXXFF00 – 0xXXXXFFFF range, for
example 0x0800FF02 and 0x0800FF04-0x0800FFFF for ARM Architecture Service, are reserved for future
expansion.

6.3 Implemented Standard Secure Service Calls
ARM intends to define a set of Standard Secure Service Calls for the management of the overall system. By
standardizing such calls, the job of implementing Operating Systems on ARM is made easier.

The following Function Identifier values are reserved for given Standard Secure Service Calls:

Table 6-4: Reserved Standard Secure Service Call range

Function Identifier Reserved for Notes
0x84000000-0x8400001F PSCI 32-bit calls

32-bit Power Secure Control Interface. For
details of functions and arguments, see [5.].

0xC4000000-0xC400001F PSCI 64-bit calls 64-bit Power Secure Control Interface. For
details of functions and arguments, See
[5.].

Note: When a hypervisor traps SMC calls, it must be able to determine from the Standard Service identifiers
which SMC calls are for power control and similar operations, so that it can emulate these calls for its
clients. Sometimes the standards defining these service calls might allow use of HVC instead of SMC,
either to support platforms that do not implement EL3, or to allow more flexibility for the hypervisor
implementation, in which case the identifiers remain the same.

SMC Calling Convention

Page 19 of 19 Copyright © 2013, 2016 ARM Limited or its affiliates. All rights reserved. ARM DEN 0028B
 Non-Confidential

APPENDIX A: EXAMPLE IMPLEMENTATION OF YIELDING
SERVICE CALLS

Many aspects of yielding calls are specific to the internal implementation of secure services, for example:
• Might a yielding call be resumed at another PE?
• Might there be more outstanding yielding calls per PE?

One approach for implementing yielding calls is for the secure service to return a specific error code when that call
is preempted by an interrupt, as illustrated in the following example. The caller can then resume the operation
after the interrupt is serviced.

To allow secure services to match the original yielding call after it resumes, the service might return opaque
handlers that can be passed back in resume_call():

(X0, X1, X2) = any_yielding_call(…);
while (X0 == SMCCC_PREEMPTED)

(X0, X1, X2) = resume_call(X1, X2);

	SMC Calling Convention
	System Software on ARM
	Release information
	1 About this document
	1.1 Introduction
	1.2 References
	1.3 Terms and abbreviations

	2 SMC and HVC Calling conventions
	2.1 SMC calls
	2.2 HVC Calls
	2.3 Fast and Yielding types of calls
	2.4 32-bit and 64-bit Conventions
	2.5 Function Identifiers
	2.5.1 Conduits

	2.6 SMC32/HVC32 Argument passing
	2.7 SMC64/HVC64 Argument passing
	2.8 SIMD and floating-point registers
	2.9 SMC and HVC immediate value
	2.10 Client ID (optional)
	2.10.1 SMC calls
	2.10.2 HVC calls

	2.11 Secure OS ID (optional)
	2.12 Session ID (optional)

	3 AArch64 SMC and HVC Calling Conventions
	3.1 Register use in AArch64 SMC and HVC calls

	4 AArch32 SMC and HVC Calling CONVENTION
	4.1 Register use in AArch32 SMC and HVC calls

	5 SMC and HVC results
	5.1 Error Codes
	5.2 Unknown Function Identifier
	5.3 Unique Identification (UID) format
	5.4 Revision information format

	6 Function Identifier Ranges
	6.1 Allocation of Values
	6.2 General Service Queries
	6.3 Implemented Standard Secure Service Calls

	APPENDIX A: EXAMPLE implementation of Yielding Service calls

